Tuesday, December 10, 2019
What Is Technology Assessment Essay Example For Students
What Is Technology Assessment? Essay EXECUTIVE SUMMARYThis report aims to familiarize and to provide an understanding of Technology Assessment both in its past and present form. Its different viewpoints, approaches, tools and methods, which are all relevant to the engineering decision-maker and analyst alike, are discussed. The four different Technology Assessment paradigms as described by Eijnhoven (1997) along with the views of lecturers in this subject on the question What is Technology Assessment? , is also discussed and analysed. By understanding the roots of technological assessment and its impacts on everyday life, one can recognize and appreciate the importance of its presence in an ever-changing environment. The first part of this report aims to achieve this. The second part of this report describes the increased need for engineers to incorporate Technology Assessment into engineering decision making and its practice. Different engineering disciplines will see Technology Assessment in different perspectives. How they will approach a particular problem through the different environmental, social, technical, economic and political factors is part of the decision making process (Taylor, 2000). THE NEED FOR TECHNOLOGY ASSESSMENTBrief HistoryIn the post-war era, the necessity of taking into account social costs and benefits as well as private costs and benefits became apparent. At the time, problems relating to forecasting the future consequences of complex technologies became more and more obvious (Freeman 1995). Such an example if the issue of nuclear power. The limitations of a purely economics-based assessment of social and environmental problems had become clear. It was in these circumstances that techniques of Technology Assessment began to be used in an attempt to overcome the short-comings and limitations of cost-benefit analysis. Thus, Technology Assessment was adopted by U.S Congress and governments from around the world and was widely recognised through the need to make publicly available assessment of the potential risks, hazards, costs and benefits of developing new technologies. It also sparked the importance of parliamentary control of assessment procedures and the involvement of diverse disciplines. ReflectionsAn example of developing new technologies would be the resource presentation by Wahidul Biswas on Socio-Technical Design in Mechanical Engineering. In his presentation, Wahidul talks about the consequences of new technologies, that is, social and environmental aspects. New technologies (NTs) centers less on the numbers employed (a social aspect) and leads to incomplete combustion and biomass consumption in developing countries (an environmental aspect). Technology Assessment as described in Eijnhoven readings by the lecture from Bronwyn Holland as a metaphor that Technology Assessment illuminates the darkness/opacity of the technology society interface (Eijnhoven 1997). This is quite true. In a society where nothing is very open, Technology Assessment is necessary to bring technology and society to light, so to speak, in order to gain a better understanding. One important purpose of technology assessment, in general, will be continual improvement. By using evaluation results, one will better understand how a technological product or process is working and where it is headed. With this greater understanding, better decisions can be made that will improve/refine the life of the product or process in the long run. Examples would include:? radiation ? nuclear energy ? fuel emissions Negative effects of the above, in general, are becoming positive effects through the continual implementation of technology assessment. Another good example would be in the area of Health Technologies. The resource presentation by Hung Nguyen on Design issues in Electrical Engineering talks about the need to design a non-invasive hypoglycaemia monitor capable of monitoring hypoglycaemia conditions, without extracting blood or body fluid. Technology assessment is necessary in designing such a device for diabetic patients. Using new and improving technology, more advanced monitoring systems can be designed and implemented to better fulfil society. Engineers are currently working on such a device. As stated in his lecture, there is no hypoglycaemia monitor in the market at present. There are many different reasons to evaluate a particular technology. Many people think of an assessment as a nerve-wracking process meant to determine continued funding or recognition. Although making decisions on continued funding or recognition could be a purpose of technology assessment, there are many other reasons why one should assess technology. Some of these reasons are: ? To provide information to engineers and others on aspects of the technology that work well and the potential problems that arises. ? To catch potential problems early in the technology product so they can be corrected before more serious problems occur further down the track. ? To guide further assessment efforts. For instance, an assessment may bring to light; issues that need to be examined in greater detail or an initial evaluation of a technology product implementation may be used, in part, to guide a later assessment of long-term impact. ? To provide information on what technical assistance may be needed. ? To determine what impact the technology product is having on users in our society. So, to answer the question Why do we need technology assessment? in my view, has two major parts:1. To find out if the technological product is beginning to produce desired results that one aims for. For example:? Has the product improved over existing model/product Is it comparatively cost effective Does it have a place in society? If so, how useful is it Are all major factors considered? That is, environmental, social, technical, economical, cultural and political factors?2. To obtain information on implementing the product. UNDERSTANDING TECHNOLOGY ASSESSMENTWhat is Technology Assessment?There is no one straight answer or definition to this question. Technology assessment has taken on many forms and approaches and is viewed differently by each individual. It is however, can be agreed that technology assessment has established itself as a new form of interdisciplinary technology research where engineers from all disciplines and other parties come together to assess a particular technology. Two definitions, which I believe, are good approaches to understanding Technology Assessment are:? Technology assessment is a class of policy studies which systematically examine the effects on society that may occur when a technology is introduced, extended or modified. It emphasizes those consequences that are unintended, indirect or delayed (Coates 1980)? Technology assessment is an attempt to establish an early warning system to detect, control, and direct technological changes and developments so as to maximise th e public good while minimising the public risks (Cetron 1972)There are four main types of TA approaches, which can be distinguished (Ende et al 1997):1. Awareness TA: forecasting technological developments and their impacts to warn for unintended or undesirable consequences. 2. Strategic TA: supporting specific actors or groups of actors in formulating their policy or strategy with respect to a specific technological development. 3. Constructive TA: broadening the decision process about technological development, to shape the course of technological development in socially desirable directions. 4. Backcasting: developing scenarios of desirable futures and starting innovation processes based on these scenarios. Technology assessment analyses are studies which:? comprehensively and systematically analyse and evaluate the prerequisites for and the positive and negative impact of introducing and (widely) applying technologies;? identify areas of social conflict created by technology applications and? Point out and review optimal courses of action (options) for improving the technologies considered and their terms of application. The Starting points for technology assessment are either from a concrete project, a specific technology or a perceived problem. There are three Technology Assessment studies usually undertaken:1. Project-induced TA-studies: Investigation of technology applications that are prototypical. 2. Technology-induced TA-studies: Address the issue of using a technology and its consequences for industry, the environment and society within the framework of a broad range of known or potential applications. 3. Problem-induced TA-studies: These studies attempt to point out possible alternative (technical) solutions for foreseeable problems, such as in the areas of transport, energy supply, environmental issues etc.) and to analyse their impacts. The four paradigms as defined by EijnhovenJ.C.M Van Eijnhoven, a professor of technology assessment had devised through extensive research, the four paradigms of technology assessment: the classical paradigm; the Office of Technology Assessment (OTA) paradigm; public technology assessment paradigm; and constructive technology (CTA) paradigm. Classical ParadigmThe classical paradigm emphasized early warning and the neutral character of the information to be provided. OTA ParadigmOTA assessments were not so directed at early warning, but at the development of policy makers. The careful balancing of participation of the U.S Congress, stakeholders and academics provided a mechanism leading to authoritative reports. Public TA ParadigmConcentrates on actively seeking participation of a wider public. The emphasis here is much less on the production of authoritative reports than on social processes that may help shape technology in society. In countries other than the United States, much more emphasis is placed upon a lack of interaction among experts, representatives and the public with respect to science and technology issues (Eijnhoven 1997). Public TA paradigm aims to bridge the gap between the public and private sectors while at the same time, expanding the relationship between people and technology. Sati System EssayTechnology Assessment (TA), I believe should be incorporated right across the engineering range of disciplines. It should be implemented at the beginning and finish of a project or product, to ensure the above-mentioned relevant factors are taken into consideration, and that the engineers decision, in the end, is the right one. Different TA tools and methods will be implemented by different engineering disciplines. TA studies should also be done to ensure the project viability and the risks as an outcome from products, structures, substances created by engineers is minimised or avoided. Engineering necessarily involves risks. Even if engineers did not innovate but rather designed things in the same way year after year, the chance of producing harm would exist. New hazards could be found in products, processes and chemicals once thought to be safe (Harris et al 1995). The element of risk is greatly increased because engineers are constantly involved in innovation. Examples:? Civil engineers and Builders constructing a bridge or building with new materials or with a new design ? Mechanical engineers designing new machines? Chemical engineers synthesizing new chemical compoundsThis is usually always done without the full knowledge of their long-term effects on humans or the environment. Thus, TA becomes crucial in reducing these effects. By implementing TA-studies, knowledge of the dangers associated with new technology can be avoided or minimised. Incorporating factors into the engineering decision making processAs mentioned in the overview, engineering disciplines have different social, technical, economic and political forces that shape their decision making process. This is quite true. Different engineering disciplines will have different views on a particular subject or project. Each engineer would have been taught to think differently and act/respond accordingly and so the engineering phrase there is more than one way to design something is quite true. ExamplesTypical examples of the different disciplines that incorporate the various factors into their decision making process is in the medical technologies and IT industry. While most assessments of medical technologies focus narrowly on their cost effectiveness, a more important question for technology assessment involves the decision making process that accompanies it. In addition one knows little information about the different roles played by different actors in the development and implementation of medical technology such as hospitals, as well as financial institutions (example, health care insurers). (Weijers 1995). Decision making on such medical technologies such as insulin fusion pumps used for the treatment of diabetics was quite interesting as it was a new technology whose optimal use pattern was (and remains) unknown. Here, different factors such as social, economical, technical, health factors and approaches are incorporated into the decision making process. Decision-making is often limited to the efficiency of the technology as such amongst other factors, and is based on the technologys state of the art at that moment. Rarely do decision-makers take into account the possibility that a technology might change, through research and development, or that new organisations or involved parties might change its application. Another example of decision making processes incorporating the various factors is in the Information Technology industry. Social, economical, technical and political factors are the important ones to consider when assessing, producing and implementing new technologies. Whereas IT has been a steadily growing element of society for the last 50 years, one is now faced with a situation where IT in many respects is setting the standard for communication between organisations. Traditional means are no longer a cost-effective alternative and will therefore be replaced. With individuals, IT is starting to become a part of everyday life. Examples include:? Electronic transfer of money instead of cash payments? Mobile phones ? Video conferencing? The InternetAll these are popular examples, which indicate changes in everyday life. Another example is in communication with authorities, where personal data is sometimes only available on computer. A growing concern whilst dealing with IT is IT-security. The three main areas are:? Continuity the availability of information to the organisation or individual? Integrity level of trust one can put on the information processed, transmitted or stored. ? Privacy who is allowed to see what informationEach engineering discipline will incorporate different factors in regards to their decision making process. For example, a Civil Engineer on a specific project, say, building a road, would need to consider all, if not most of the factors listed previously. Whilst an Environmental Engineer would probably concentrate on the environmental, cultural, and social factors associated with building a road. But both would collaborate with one another to achieve an optimal goal or end product. This leads to the issue of interdisciplinary research. Interdisciplinary ResearchAs mentioned earlier, Technology Assessment has established itself as a new form of interdisciplinary technology research where engineers from all disciplines and other parties come together to assess a particular technology. Technology and society is quite clearly approached from different directions by different disciplines not just engineers. These include economists, technologists, scientists etc. Different engineering disciplines with their different assumptions and methods are brought into contact with one another as evident with any project undertaken or development of new technology. Decisions are made, during the research stage of new technologies and of new equipment, which will later force all efforts to design the jobs in connection with them. This research phase should therefore attract other disciplines other than engineering such as social scientists. Indeed, there are similarities and differences existent in the way socio-technical information is sought in the various disciplines. The basic model drawn on the previous page is typical of the engineering decision making process that engineers use to plan, implement and design a particular project. This model can also be used in other disciplines. ConclusionFrom this report one can conclude by saying that Technology Assessment is vital in all aspects of society and not just in engineering alone. Through the different approaches, viewpoints, tools and methods of technology assessment we can gain a better understanding of the processes involved and to produce, refine and implement new and existing technologies to better fulfil our daily lives. Through the understanding of paradigms classical, OTA, public and Constructive (as described by Eijnhoven), we can try and relate it to real-life situations and engineering applications. The need for Technology Assessment to be incorporated at the design phase of a project is crucial and fundamental in the way Engineering design is undertaken by the various Engineering disciplines. The issue of Interdisciplinary research and collaboration is achieved through the use of Technology Assessment tools and techniques. Also, the different social, technical, economic and political factors are all factors which influence the way decision making processes are made through different engineering disciplines. Technology Assessment has taken on many forms during this era and is varied through each individual and/or organisation. It has an enormous impact on my future as a practising engineer. REFERENCESTaylor, Elizabeth. 2000 48270 Technology Assessment Study Guide Notes s2000 1, Freeman, Christopher, 1995. Preface to Managing Technology in Society. Managing Technology and Society, 1995, p. ix. Pinter PublishersEijnhoven, Josee Van 1997 Technology Assessment : Product or Process?Technological Forecasting and Social Change, vol 54Biswas, Wahidul 2000 Socio-Technical Design in Mechanical EngineeringResource Presentation 2000Holland, BroTechnology Essays
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.